Drosophila Ten-m and Filamin Affect Motor Neuron Growth Cone Guidance
نویسندگان
چکیده
The Drosophila Ten-m (also called Tenascin-major, or odd Oz (odz)) gene has been associated with a pair-rule phenotype. We identified and characterized new alleles of Drosophila Ten-m to establish that this gene is not responsible for segmentation defects but rather causes defects in motor neuron axon routing. In Ten-m mutants the inter-segmental nerve (ISN) often crosses segment boundaries and fasciculates with the ISN in the adjacent segment. Ten-m is expressed in the central nervous system and epidermal stripes during the stages when the growth cones of the neurons that form the ISN navigate to their targets. Over-expression of Ten-m in epidermal cells also leads to ISN misrouting. We also found that Filamin, an actin binding protein, physically interacts with the Ten-m protein. Mutations in cheerio, which encodes Filamin, cause defects in motor neuron axon routing like those of Ten-m. During embryonic development, the expression of Filamin and Ten-m partially overlap in ectodermal cells. These results suggest that Ten-m and Filamin in epidermal cells might together influence growth cone progression.
منابع مشابه
The Tyrosine Kinase Abl and Its Substrate Enabled Collaborate with the Receptor Phosphatase Dlar to Control Motor Axon Guidance
Genetic analysis of growth cone guidance choice points in Drosophila identified neuronal receptor protein tyrosine phosphatases (RPTPs) as key determinants of axon pathfinding behavior. We now demonstrate that the Drosophila Abl tyrosine kinase functions in the intersegmental nerve b (ISNb) motor choice point pathway as an antagonist of the RPTP Dlar. The function of Abl in this pathway is depe...
متن کاملThe Transmembrane Semaphorin Sema I Is Required in Drosophila for Embryonic Motor and CNS Axon Guidance
The semaphorins comprise a large family of conserved glycoproteins, several members of which have been shown to function in repulsive neuronal growth cone guidance. We show here that Drosophila Semaphorin I (Sema I), a transmembrane semaphorin expressed on embryonic motor and CNS axons, is required for correct guidance of motor axons and for the formation of CNS pathways. In mutant embryos lack...
متن کاملChoosing the road less traveled by: a ligand-receptor system that controls target recognition by Drosophila motor axons.
In this issue of Genes & Development, Siebert and colleagues (pp. 1052-1062) define a ligand-receptor system that controls motor axon guidance and target recognition in the Drosophila embryo. The beaten path (beat) and sidestep (side) genes were known to be important regulators of motor axon guidance. Siebert and colleagues now show that Beat and Side are cell surface proteins that physically i...
متن کاملTargeted disruption of Ca2+-calmodulin signaling in Drosophila growth cones leads to stalls in axon extension and errors in axon guidance
Ca(2+)-calmodulin (CaM) function was selectively disrupted in a specific subset of growth cones in transgenic Drosophila embryos in which a specific enhancer element drives the expression of the kinesin motor domain fused to a CaM antagonist peptide (kinesin-antagonist or KA, which blocks CaM binding to target proteins) or CaM itself (kinesin-CaM or KC, which acts as a Ca(2+)-binding protein). ...
متن کاملCompetition and cooperation among receptor tyrosine phosphatases control motoneuron growth cone guidance in Drosophila.
The neural receptor tyrosine phosphatases DPTP69D, DPTP99A and DLAR are involved in motor axon guidance in the Drosophila embryo. Here we analyze the requirements for these three phosphatases in growth cone guidance decisions along the ISN and SNb motor pathways. Any one of the three suffices for the progression of ISN pioneer growth cones beyond their first intermediate target in the dorsal mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011